82 research outputs found

    Pattern Clustering using Soft-Computing Approaches

    Get PDF
    Clustering is the process of partitioning or grouping a given set of patterns into disjoint clusters. This is done such that patterns in the same cluster are alike and patterns belonging to two dierent clusters are dierent. . Clustering Process can be divided into two parts Cluster formation Cluster validation The most trivial K-means algorithm is rst implemented on the data set obtained from UCI machine repository. The comparison is extended to Fuzzy C-means algorithm where each data is a member of every cluster but with a certain degree known as membership value. Finally, to obtain the optimal value of K Genetic K-means algorithm in implemented in which GA nds the value of K as generation evolves.The ecieny of the three algorithms can be judged on the two measuring index such as : the silhouette index and Davies-Bouldin Index

    Implementation of reed solomon error correcting codes

    Get PDF
    In the present world, communication has got many applications such as telephonic conversations etc. in which the messages are encoded into the communication channel and then decoding it at the receiver end. During the transfer of message, the data might get corrupted due to lots of disturbances in the communication channel. So it is necessary for the decoder tool to also have a function of correcting the error that might occur. Reed Solomon codes are type of burst error detecting codes which has got many applications due to its burst error detection and correction nature. My aim of the project is to implement this reed Solomon codes in a VHDL test bench waveform and also to analyse the error probability that is occurring during transmission. To perform this check one can start with simulating reed Solomon codes in MATLAB and then going for simulation in XILINX writing the VHDL code. The encoder and decoder design of reed Solomon codes have got different algorithms. Based on your requirements you can use those algorithms. The difference between the algorithms is that of the computational calculations between them. The complexity of the code depends on the algorithm used. I will be using Linear Feedback Shift Register circuit for designing the encoder

    GANTouch: An Attack-Resilient Framework for Touch-based Continuous Authentication System

    Full text link
    Previous studies have shown that commonly studied (vanilla) implementations of touch-based continuous authentication systems (V-TCAS) are susceptible to active adversarial attempts. This study presents a novel Generative Adversarial Network assisted TCAS (G-TCAS) framework and compares it to the V-TCAS under three active adversarial environments viz. Zero-effort, Population, and Random-vector. The Zero-effort environment was implemented in two variations viz. Zero-effort (same-dataset) and Zero-effort (cross-dataset). The first involved a Zero-effort attack from the same dataset, while the second used three different datasets. G-TCAS showed more resilience than V-TCAS under the Population and Random-vector, the more damaging adversarial scenarios than the Zero-effort. On average, the increase in the false accept rates (FARs) for V-TCAS was much higher (27.5% and 21.5%) than for G-TCAS (14% and 12.5%) for Population and Random-vector attacks, respectively. Moreover, we performed a fairness analysis of TCAS for different genders and found TCAS to be fair across genders. The findings suggest that we should evaluate TCAS under active adversarial environments and affirm the usefulness of GANs in the TCAS pipeline.Comment: 11 pages, 7 figures, 2 tables, 3 algorithms, in IEEE TBIOM 202

    On the Inference of Soft Biometrics from Typing Patterns Collected in a Multi-device Environment

    Full text link
    In this paper, we study the inference of gender, major/minor (computer science, non-computer science), typing style, age, and height from the typing patterns collected from 117 individuals in a multi-device environment. The inference of the first three identifiers was considered as classification tasks, while the rest as regression tasks. For classification tasks, we benchmark the performance of six classical machine learning (ML) and four deep learning (DL) classifiers. On the other hand, for regression tasks, we evaluated three ML and four DL-based regressors. The overall experiment consisted of two text-entry (free and fixed) and four device (Desktop, Tablet, Phone, and Combined) configurations. The best arrangements achieved accuracies of 96.15%, 93.02%, and 87.80% for typing style, gender, and major/minor, respectively, and mean absolute errors of 1.77 years and 2.65 inches for age and height, respectively. The results are promising considering the variety of application scenarios that we have listed in this work.Comment: The first two authors contributed equally. The code is available upon request. Please contact the last autho

    Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes

    Get PDF
    We introduce a paradigm-"hydricity"-that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40-46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching similar to 50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a "turbine"-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65-70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach similar to 35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two-to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses
    corecore